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ABSTRACT: In an extrusion process, linear viscoelastic properties of molten poly(ethyl-
ene vinyl acetate) (EVA) copolymers, which have one principal factor of variation, can
be estimated from in-line near-infrared (NIR) spectra. The NIR transmission spectra
of molten polymer flow stream were collected in a flow cell attached to a single-screw
extruder. Dynamic rheological functions obtained from linear viscoelastic measure-
ments, for example, the complex viscosity response, are regressed against the NIR
spectra. The primary method for the rheological measurements involved sinusoidal,
oscillatory shear experiments at varying angular frequencies using a cone-and-plate
viscometer. All measurements were carried out on molten EVA polymers at 2007C.
Calibration models were built on spectra in the carbon—hydrogen (C{H) vibrational
stretch, first overtone, wavelength region (1620–1840 nm), and these models were
used to predict the rheological material functions of copolymer samples. The robustness
of these models was tested on independent prediction samples that had not been in-
cluded in the calibration models. q 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 873–
889, 1998

Key words: in-line; complex viscosity; near-infrared spectroscopy; extrusion; copoly-
mer

INTRODUCTION techniques was detailed to separate two indepen-
dent factors of variation in the NIR absorption
spectra, namely the primary, dominant effects ofThe objective of this study is to extend the applica-
comonomer composition and the secondary rheo-bility of NIR spectroscopy in making direct, simul-

taneous measurements of physical properties and logical effects due to anisotropic flow behavior in
chemical composition in process real time. In a the optical measurement volume. Separate cali-
previous publication, a methodology was detailed bration and validation models were developed for
for correlating the polymer melt flow index (MI) predicting vinyl acetate (VA) concentration and
with NIR absorption spectra.1 In this work, simul- MI, on samples belonging to two different groups.
taneous predictions were made of comonomer One group consisted of EVA samples with similar
composition and MI of flowing, molten EVA copol- VA content and varying MI. The second group
ymers during extrusion, using NIR spectra in the consisted of samples with varying VA content but
C{H stretch first overtone region (1620–1840 similar MI values. The ability of the models to
nm). A procedure using multivariate statistical independently predict VA content as well as MI

for the two different sample groups reiterated the
fact that MI is not related to chemical composi-

Correspondence to: M. G. Hansen.
tion, but there was sufficient information in the

Journal of Applied Polymer Science, Vol. 68, 873–889 (1998)
q 1998 John Wiley & Sons, Inc. CCC 0021-8995/98/060873-17 NIR absorption spectra to estimate polymer MI.
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874 VEDULA AND HANSEN

The following work describes a methodology to atmosphere. The properties obtained from these
experiments are the storage modulus G * (v ) , lossestimate such rheological properties as dynamic

linear viscoelastic material functions from the modulus G 9 (v ) , and Éh*(v )É as a function of v.
Figure 1 illustrates a typical plot of the linearNIR spectra of EVA copolymers. The linear visco-

elastic properties of interest for the current study viscoelastic response for an EVA sample with 9.08
wt % VA concentration and MV w of 228,000.are complex viscosity Éh*(v )É responses (v, the

angular frequency) of EVA copolymers, which are Large experimental scatter was observed in the
G * (v ) measurements for samples with low MV wobtained from sinusoidal, oscillatory, shear exper-

iments. In addition to quantitative calibration (low melt viscosity or high MI values) at small v
values (v õ 0.3 rad/s) . This was attributed tomodels, this study will focus on theoretical consid-

erations for the origin of rheological response in limitations in instrument accuracy for measure-
ments of low G * (v ) values [G * (v ) õ 0.0001 Pa].the NIR spectra. Qualitative results from multi-

variate analysis will be detailed, and the models Similarly, sample losses were observed at higher
frequencies (v ú 150 rad/s) , and the actual ap-will be tested in a real-time extrusion process.
plied shear stress differed from the control stress.
This led to some noise in the measurements.
Therefore, only data in the frequency range, vEXPERIMENTAL
Å 0.38 rad/s to v Å 122 rad/s, were considered
for analysis. Figure 2 shows an overlaid plot ofFor this study, EVA copolymers from two inde-

pendent sources were utilized for the linear visco- the complex viscosity, Éh*(v )É, response, with
varying v, for the EVA samples. These measure-elastic experiments. These sample sets will be re-

ferred to, henceforth, as Group I and Group II ments were used as the reference values for the
data analysis.samples. Group I is comprised of 14 samples of

EVA copolymers from one manufacturer, and The experimental setup and details for collect-
ing the NIR absorption spectra were outlined inGroup II is comprised of five EVA samples from

a second manufacturer. The existence of two sepa- the previous publication.1

rate sets of polymer samples provided the advan-
tage of preparing calibration models on one set of
polymer samples and using the second set as an DATA ANALYSIS
independent test set to validate the precision of
the calibration models. This would also test the Compared to MI calibration, quantitative analy-

sis for complex viscosity response from NIR ab-ability of the calibration models to predict the de-
sired properties in light of external variations, sorption spectra is more complex, and mathemati-

cal modeling involves a combination of severalsuch as processing differences during polymeriza-
tion, etc. multivariate techniques, such as principal compo-

nent analysis (PCA)2 and partial least squaresThe linear viscoelastic measurements were
performed on molten EVA samples at 2007C with (PLS).3,4 A schematic representation for correlat-

ing the Éh*(v )É response to NIR absorption spec-a Rheometricsy Dynamic Stress Rheometer. The
samples were compression molded into disks, 25 tra is shown in Figure 3. There is one major differ-

ence in this analysis as compared with the MImm in diameter, which were melted in the rheom-
eter at the desired temperature. A 25-mm diame- calibration discussed before. The property being

calibrated, Y (Éh*(v )É response), can no longer beter cone-and-plate viscometer with a gap angle of
0.1 radians (rad) was used for these measure- represented as a vector, or an m 1 1 matrix (cali-

bration of MI or VA concentration). The Éh*(v )Éments. Constant amplitude, sinusoidal, shear
stress at 200 Pa was applied to the molten sample, values at varying v for the EVA samples are put

in a matrix with several columns, or variables.and rheological measurements were made over a
wide range of angular frequencies, v, from 0.01 to Each column in this matrix represents the

Éh*(v )É values at a single v value. Therefore, the500 rad/s. At a stress of 200 Pa, the EVA samples
exhibited rheological responses in the linear vis- number of columns, n , in the matrix equals the

total number of frequencies at which the linearcoelastic region over several decades of frequency.
The properties of interest were measured at 12 viscoelastic properties were measured. The rows

in the matrix correspond to the rheological re-frequency values per decade. A continuous purge
of dry nitrogen gas prevented any sample degra- sponse for different samples used in the calibra-

tion. If m samples are used for calibration, thendation, or moisture absorption, from the ambient
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Figure 1 Plot of the dynamic rheological properties versus angular frequency for an
EVA sample with 9.08 wt % VA content and MV w of 228,000. The measurements were
carried out under a shear stress of 200 Pa and at isothermal conditions of 2007C.

Y is of size m 1 n . Similarly, in the X matrix (m A variety of regression techniques can be used
to develop calibration models for data with multi-1 k ) , the rows correspond to the absorbance val-

ues for different samples, and the columns corre- ple columns of Y . The first methodology, PLS-1,
treats each column in Y as a single variable thatspond to absorbance values at different wave-

lengths (a total of k wavelengths). would be independently regressed against the ab-

Figure 2 Overlaid plot of the complex viscosity response for EVA samples over an
angular frequency range of 0.38 rad/s to 122 rad/s. The measurements were carried
out under a shear stress of 200 Pa and at 2007C.
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876 VEDULA AND HANSEN

Figure 3 Schematic representation for correlation of Éh*(v )É with NIR absorbance
spectra. The complex viscosity response in the Y matrix is regressed against the NIR
spectral data (X matrix), using multivariate statistical analysis.

sorbance matrix.4 Thus, n calibration models are for the current work.5 This methodology involves
initial identification of the principal factors ofdeveloped (for n variables in Y ), one for the

Éh*(v )É vector at each v. In each of these n mod- variation, or the principal components, in the Y
matrix alone. These principal components oftenels, the principal components are evaluated by

maximizing the covariance of XTy j , where y j is relate to the actual, physical factors of variation
in the data. For example, it is known that thethe j -th column of matrix Y . However, these cal-

culations can be done only at the expense of valu- linear viscoelastic response (Y matrix) of the EVA
samples is governed by the MV w and MWD parame-able computational time. Also, the use of PLS-1

provides little information about the relationship ters. Therefore, the differences in Éh*(v )É values,
which form the Y matrix, can be attributed tobetween response variables in the Y matrix.

Another technique, entitled PLS-2 regression, varying MV w and MWD values in these samples. If
the response variables forming the Y matrix aretreats all response variables as a single variable

or block, and regression is performed on the Y highly intercorrelated (this would happen if there
were only a small number of independent physicalmatrix as a whole.4 Thus, PLS-2 involves building

a single calibration model for the entire Y matrix. factors affecting the data), then the matrix can
be decomposed into a small number of principalAn important observation is made regarding the

use of PLS-2 on several response variables while components that explain most of the variance in
Y . In the above example, if the only difference inevaluating the optimal number of factors. If the

response variables in the Y matrix are indepen- the complex viscosity response of all EVA samples
were due to variation in only one physical parame-dent of each other, or are not intercorrelated, then

the number of factors required for building opti- ter, say MV w values, then only one principal compo-
nent will sufficiently explain most of the Y-datamal models would be different for each response

variable. However, PLS-2 gives only one such variance.
The linear viscoelastic behavior of these copoly-value for the number of factors, and this leads to

a calibration model that overfits some variables mers is typical of a class of polymers that are
thermo-rheologically simple.6,7 For such poly-and underfits others. However, if the response

variables are highly intercorrelated, PLS-2 cali- mers, the rheological behavior is oversimplified,
due to the absence of factors, such as phase sepa-bration is a good choice for analysis. Again, devel-

oping a calibration model using PLS-2 requires ration, and the viscoelastic response is influenced
primarily by structural variations, which are gov-extensive computations, as it requires evaluating

the SVD of a large covariance matrix. erned by molecular weight parameters. Therefore,
for such polymers, it is expected that only a fewTo circumvent these problems, a more efficient

methodology based on an earlier study is used factors will sufficiently explain most of Y-data

4708/ 8E13$$4708 02-27-98 15:22:36 polaa W: Poly Applied



IN-LINE FIBER-OPTIC NIR SPECTROSCOPY. II 877

variance. This methodology of identifying the related to BÅ [b1 , . . . , bk by the following expres-
sion:main factors of variation using multivariate anal-

ysis can potentially serve as a mathematical ap-
proach to separate contributions from different a Å [b1 , . . . , bk ] [V1,PCA , . . . , Vk,PCA]T (5)
parameters that affect the rheological behavior.

Decomposition of the Y matrix into principal An alternate and equivalent expression that re-
components can be carried out by PCA analysis. lates the predictions for Y with predicted tj,NIR , { j
Using SVD, PCA is performed on the Y-data to Å 1, . . . , k } is written as follows:
yield the following result:

YO Å [tO 1,NIR , . . . , tO k,NIR] [V1,PCA , . . . , Vk,PCA]T (6)
Y Å UPCA SPCA VT

PCA (1)
For the complex viscosity calibration, data will

where the columns of UPCA are the eigenvectors be presented in the following section that will sup-
of YY T, the columns of VPCA are the eigenvectors port the conclusion that there is only one significant
of Y TY , and SPCA is a diagonal matrix containing factor of variation in Y. Thus, from PCA analysis,
the eigenvalues. VT

PCA is the transpose matrix of it will be shown that k Å 1, and the PLS-1 regres-
VPCA . The subscript PCA is used to identify re- sion model will be built only for the first factor.
sults obtained from PCA analysis (Later on, such
decomposition will be carried out for PLS as well) .

Scores and LoadingsThe first k principal components are defined as:

In this section, scores and loadings matrices are
TPCA Å [t1,PCA , . . . , tk,PCA] introduced as tools that aid in the qualitative in-

terpretation of multivariate analysis. By defini-Å [s1,PCAU1,PCA , . . . , sk ,PCAUk,PCA] (2)
tion, each principal component is associated with
a ‘‘score’’ and a ‘‘loading’’ vector. (A principal com-

PCA decomposition is performed, such that the ponent is obtained by the product of the corre-
principal components, or latent variables, or ei- sponding score and loading vector.) The loading
genvectors are evaluated in the order of their rela- vectors constitute the columns of matrix V, which
tive importance in explaining the data variance. is obtained by decomposition. These vectors dis-
Thus, the first few factors explain maximum ‘‘in- play the clustering of the independent variables
formation’’ in the data, and the latter factors con- (e.g., v ) into classes that are used in explaining
tain only random noise. Using this criterion, the the variance in the data. Thus, the loading values
first k significant principal components are se- can be viewed as ‘‘weights’’ associated with each
lected. independent variable, and they describe the rela-

In the next step, the smaller matrix TPCA (m tive importance of the independent variables in1 k ) is used for PLS regression against the NIR regression. The score vectors are made up of the
absorbance matrix, X . The regression equation for columns of matrix T , and their values are ‘‘magni-
the vectors, tj,PCA ( j-th column of TPCA) , is ex- tudes’’ that are multiplied by the corresponding
pressed as follows: loading vectors. The score values characterize the

relationship between the samples. For example,
tP j,NIR Å X bj (3) a linear score vector would imply a linear relation-

ship between the samples. More information
where t̂j,NIR (m 1 1) is the NIR predicted value of about these matrices and their interpretation can
tj,PCA (m 1 1) obtained from PLS regression. bj be found in Refs. 2–4. In the following sections,
(n 1 1) is a vector containing the regression coef- these matrices will be used to provide useful infor-
ficients. After regression of vectors tj,PCA , the orig- mation about the regression.
inal variables in the Y matrix are regenerated by
estimating the regression coefficients, a, from the
following relationship: RESULTS AND DISCUSSION

YO Å X a (4) This section discusses the results obtained for the
prediction of Éh*(v )É response from in-line NIR
absorption spectra. The linear viscoelastic experi-The new set of regression coefficients, a, are

4708/ 8E13$$4708 02-27-98 15:22:36 polaa W: Poly Applied



878 VEDULA AND HANSEN

Table I PCA on the Y Matrix Containing the ples used for this study, there is only physical
Complex Viscosity Values: Contribution from factor responsible for variation in rheological re-
Each Principal Component sponse (which is due to change in MV w values).

With increasing MV w values, a positive shift is ob-
Variance Overall served in the complex viscosity curves. A qualita-

Principal Explained by Variance tive interpretation of the first principal compo-Component This Factor Explained
nent is brought about from the loading (V1,PCA)Number (%) (%)
and the score (t1,PCA) vector obtained from PCA
decomposition. In Figure 4, the first loading vec-1 99.82 99.82
tor is plotted against the angular frequency, v.2 0.17 99.99

3 0.01 100.00 As expected, the first loading vector is representa-
tive of an ‘‘average’’ complex viscosity curve,
which explains the general trend in variation of
the complex viscosity response for different v val-ments in the angular frequency range of v Å 0.38

rad/s to v Å 122 rad/s were used for building the ues. In such a case, the score vector is made of
magnitudes or vertical shift factors, which whenY matrix. The Éh*(v )É values were measured at

a total of 31 discrete v-values in this range. In multiplied with the average loading spectrum,
gives the individual complex viscosity curve fora similar manner to MI calibration, the natural

logarithms of the complex viscosity response were each sample. Similar horizontal shifting proce-
dures are commonly used by rheologists to gener-included in the analysis.1 Thus, the Y matrix is

composed of ln(Éh*(v )É) values. ate master curves to account for variations in tem-
perature and molecular weight.6 As an example,Ten samples, nine from Group I and one from

Group II, were included in the calibration set. The such shift factors are utilized to relate the specific
viscosity to concentration in polymer solutions byGroup II sample was required in the calibration

because one sample in Group II had VA concentra- scaling the molecular weight dependence. The
above procedure can be viewed as an alternatetion outside the range of Group I sample concen-

trations. The model developed on samples in the mathematical approach to achieve similar shift-
ing effects through eigenvector rotation, insteadcalibration set was used to predict samples in an

independent prediction set. Four samples from of commonly used superposition principles, which
use curve-fitting strategies to obtain the shift fac-Group I and four samples from Group II were used

in the prediction set. For the calibration, ten repli- tors. A comparison between the two methodolo-
gies shows that the loading vector is analogous tocate NIR spectra were collected in-line for all the

samples. One spectrum, the average of these rep- a master curve, while the score vector includes
shift factors for individual curves. However, thelicate spectra for each sample, was used to con-

struct the calibration set. As for MI calibration, current method using multivariate analysis, does
not increase the range of v values unlike the nor-absorbance spectra in the wavelength range of

1620–1840 nm were used for regression. First de- mal superposition procedures.6

In the rheology data, if there were other addi-rivatives of the absorbance spectra were utilized
for calibration, in order to remove baseline offsets. tional effects, or factors of variation, the variance

in the complex viscosity functions could not be
represented by a single shift. In such cases, addi-

PCA of Y Matrix: Decomposition into tional principal components would be required to
Principal Components account for these parametric effects. In other

words, more than one principal component wouldThe Y matrix of ln(Éh*(v )É) values was standard-
ized by mean-centering. Prior to PLS regression be required to explain significant variance in Y .

From the above analysis, it is seen that the Yfor obtaining the regression coefficients, PCA was
performed on the Y matrix to decompose it into a matrix can be reduced into a single vector t1,PCA ,

which corresponds to the eigenvector associatedsmaller matrix, TPCA . This matrix is made up of
the first few principal components that are re- with the largest eigenvalue. The original Y matrix

is regenerated from the decomposed principal com-quired to quantify most of the information in
ln(Éh*(v )É) data. As shown in Table I, only one ponents using eq. (6), which can be rewritten as

follows:principal component was sufficient to explain
99.8% of the variance in the ln(Éh*(v )É) data.

This result implies that, in the set of EVA sam- Y reg Å t1,PCAVT
1,PCA (7)
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Figure 4 PCA analysis of Y matrix containing the complex viscosity data: Plot of
loading vector for the first principal component represents the average complex viscos-
ity curve. The magnitudes or ‘‘vertical shift factors’’ in the first score vector are
multiplied with the loading curve to produce the original complex viscosity curves.

where Y reg is the regenerated Y matrix, t1,PCA is ables, ln(Éh*(v )É) values in the Y matrix, to the
regenerated matrix, ln(Éh*(v )É) values in Yreg . Itthe first column of TPCA and V1,PCA is the first

column of VPCA . Equation (7) provides a frame- shows how well the information in the Y matrix
can be obtained by using only one principal com-work for comparing the original response vari-

Figure 5 PCA analysis of Y matrix containing complex viscosity response: Plot com-
paring the original Y matrix (symbol—solid line) with the regenerated matrix, Y reg ,
(symbol— L ) which is obtained from one principal component PCA model. The excel-
lent fit between the two curves shows that one factor is sufficient to represent significant
variance in Y matrix.
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Table II PLS Regression on the Reduced matrix t1,PCA . It is observed that 99.6% of the vari-
Matrix: Contribution from Each Principal ance in t1,PCA can be explained by four factors.
Component Once the optimal number of factors to be included

in the calibration model is decided, a final calibra-
Principal t1,PCA Calibration Model: tion model is developed from all samples in the

Component Overall Explained calibration set. This model is used to predict theNumber Variance in t1,PCA (%)
desired properties of samples from an indepen-
dent prediction set.1 31.5

Figure 6 shows the in-line NIR predicted t̂1,NIR2 94.9
for samples in the calibration and prediction sets,3 98.2

4 99.6 with a calibration model based on four factors.
The deviations of the NIR predicted t̂j,NIR values
from actual t1,PCA values are expressed as residual
errors for both the calibration and the predictionponent. Figure 5 illustrates this feature; the com-
sets. These residual errors dictate the predictionplex viscosity responses, Éh*(v )É, from Y and Yreg

capability of the calibration model. The SECare plotted against v.
value, or the standard residual error for calibra-
tion, was 0.38, and the SEP value, the standard

PLS-1 Regression of the Reduced Matrix, t1,PCA: residual error for samples in the prediction set,
Regression onto X was 0.80. When the entire complex viscosity re-

sponse, Ŷ , for the samples is regenerated usingAfter PCA, a PLS-1 regression model is developed
the predicted t̂j,NIR values [this can be done byfor correlating t1,PCA , of size (m 1 1), onto the
replacing t1,PCA with t̂j,NIR in eq. (7)] , these resid-NIR absorbance matrix, X . In this section, the
ual errors translate into prediction errors forPLS results are discussed in detail. The PLS cali-
Éh*(v )É values at each v. The regeneratedbration is developed on the first derivatives of the
Éh*(v )É response curves for samples in the cali-absorbance spectra, using the leave-a-sample
bration set are shown in Figure 7. Similarly, the(LAS) crossvalidation technique, as discussed
predicted Éh*(v )É response curves for samples inearlier.1 Based on the PRESS criterion coupled
the prediction set are compared with the labora-with an F-statistic criterion, a four-principal com-
tory measured response curves in Figure 8. Inponent model was chosen for calibration. In Table
these figures, the deviations of the in-line NIRII, the contribution of each principal component

is listed, in explaining the variance in the reduced predicted curves from the laboratory-measured

Figure 6 PLS calibration of t1,PCA with regression against NIR absorbance data:
predictions of t̂1,NIR for samples in the calibration and prediction sets. The standard
errors associated with the calibration and prediction sets are SEC Å 0.38 and SEP
Å 0.80, respectively.
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Figure 7 Calibration set: predictions for rheological response— Éh*(v )É versus v—
for EVA samples. The complex viscosity curves are regenerated from the PLS-predicted
t̂1,NIR values using eq. (7). The standard error associated with the calibration set is
SECÅ 0.38. The solid curve represents the original curve, and the symbol L represents
the PLS-predicted curve.

response curves in the calibration and prediction the loading vector for the first principal compo-
nent against NIR wavelengths, shown in Figuresets correspond to the residual errors in the cali-

bration model. 9, typically resembles the average derivative spec-
trum.1 The first principal component is expectedIn a similar manner to PCA, PLS analysis also

results in score and loading matrices.2–4 A plot of to contain information about VA content, which

Figure 8 Prediction set: predictions for rheological response— Éh*(v )É versus v—
for EVA samples. The complex viscosity curves are regenerated from the PLS-predicted
t̂1,NIR values using eq. (7). The standard error associated with the prediction set is SEP
Å 0.80. The solid curve represents the original curve, and the symbol L represents the
PLS-predicted curve.
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Figure 9 PLS calibration of T1,PCA : loadings plot for the first factor. The loading
vector for the first principal component contains information about VA content (primary
variation) in the EVA copolymers. The loading weights are higher in the wavelength
region corresponding to the C{H stretch peaks.

is the dominant variable. For regression, wave- the wavelength range of 1720–1780 nm, which
contains the polyethylene doublet peaks in thelengths with larger loading values are relatively

more important (in explaining variance in the re- original absorbance spectra.1 The score vector for
the first principal component is plotted againstsponse variables) than wavelengths with lower

loading values. From the first loading plot, it is the VA concentration, as shown in Figure 10,
which shows a linear trend, as expected. There-observed that information for VA content lies in

Figure 10 PLS calibration of t1,PCA : scores plot for the first factor. The score vector
for the first principal component shows a linear trend with varying VA concentration.
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Figure 11 PLS calibration of t1,PCA : loadings plot for the second factor. The loading
vector for the second principal component contains information about rheological re-
sponse (secondary variation) in EVA copolymers. The loading weights are higher in
the wavelength regions corresponding to shoulders of the C{H stretch peaks.

fore, the first factor has most of the information wavelengths have heavier loadings in the origi-
nal absorbance spectrum. This observation isabout VA content variation, but only some infor-

mation about the rheological response. presented in a schematic form in Figure 12. For
example, it is seen in Figure 12 that the wave-The ‘‘secondary’’ effects on NIR spectra, due to

rheological flow, are expected to dominate in the length region of 1700 to 1710 nm shows higher
loading weights for the second principal compo-higher factors. As observed in Table II, the second

principal component contains maximum informa- nent. Combining this information with that ob-
tained from Table II, it is concluded that thetion about the rheological response because this

principal component explains maximum variance variance in absorbance values in this wave-
length region explains information pertainingin Y data (an additional 63.4% variance is ex-

plained by the second factor ) . The loading and to the rheological response. Similarly, other
wavelength regions are identified that containscore vectors for the second principal component

should explain this feature. Figure 11 shows a information about the Éh*(v )É response. Based
on the qualitative analysis using loadings plots,plot of the second loading vs. the NIR wave-

length. It is observed that higher loading Figure 13 illustrates the wavelength regions in
the original absorbance plot that are identifiedweights are associated with absorbances in the

wavelength region of 1680–1720 nm. This re- with information relating to VA content and
rheological response.gion corresponds to the shoulder of the methyl-

ene stretch. (Note the presence of the shoulder
in the overlaid absorbance plot in the earlier
publication.) 1 Changes in the slope of the shoul-

Origin of Spectral Information Relating toder are observed about an inflection point at
Rheological Responsearound 1715 nm, which lies in a trough in the

first derivative plot. A similar observation is It is tempting to assume that these wavelength
regions, which correlate with the rheological prop-made in the wavelength regions of 1730–1745

nm and in 1745–1760 nm, which form shoulders erties, contain information about end-group con-
centrations. It is common knowledge that polymerof the doublet peaks.

By looking at the loadings in the first deriva- chain end-group concentrations are inversely pro-
portional to average molecular weight, and moni-tive domain, it is possible to determine which
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Figure 12 Schematic illustrating a methodology to identify the wavelength regions
in the original absorbance spectrum with heavy loading weights for a given factor, for
example factor 2 in Figure 11.

toring these concentrations has led to direct corre- 2.5 1 2.5 mm in the optical measurement volume
of the flow cell. Figure 14 shows a schematic oflations with molecular weight parameters in ear-

lier studies.8 However, such work has been done the contraction in flow that leads to orientation
of the flowing polymer chains. Under constantonly with polyol oligomers, or very low molecular

weight macromolecules, especially with hydroxyl nominal shear rates (Ç 25 s01) , these polymers
would exhibit orientation effects that would varygroups, which have strong spectral signatures in

NIR. In the present study, for the high molecular with differences in molecular weight parameters.
Subsequently, these factors would affect the NIRweight EVA copolymers, a rough estimate of the

typical end-group concentration, from the poly- absorption spectra, though to a lower order mag-
nitude compared to the strong variations due tomer number-averaged molecular weight and

monomer molecular weights, gave a value of chemical composition. It is assumed that these
effects are also nonlinear; and hence, using natu-around 0.2%. Such concentrations are very low

compared to the strong main chain signature due ral logarithms of the material functions during
regression, amounted to extracting a first-orderto C{H stretches. Hence, for the current system,

it seems unlikely that the end-group measure- relationship from the rheology-absorbance corre-
lation.ments have any direct correlation with rheological

properties. Thus, this methodology was used to separate
two features—varying VA content and varyingOne the other hand, during flow of molten EVA

copolymers in a polymeric process such as extru- rheological behavior—from the absorbance spec-
tra. The score vector for the second factor wassion, anisotropic flow effects on NIR spectra be-

come significant. For the current experimental plotted against the response variable vector
t1,PCA , as shown in Figure 15. If the rheologicalsetup, the flow cross-section of these molten poly-

mers changes from 9.5 1 2.5 mm at the exit port behavior were completely identified in the second
factor alone, then the score vector for the secondof the gear pump to a restricted cross-section of
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Figure 13 Overlaid plot of NIR absorbance spectra of EVA copolymers in the C{H
stretch, first overtone region (1620–1840 nm). The wavelength regions associated with
the primary variation, VA content (Factor 1); and the wavelength regions correlating
with secondary variation, rheological properties (Factor 2) are identified from PLS
analysis.

factor would be expected to show a strictly linear rors are attributed to lack of a uniform distribu-
relationship with t1,PCA . Because the second factor tion of sample space. Each absorbance scan was
alone is not sufficient for predicting rheological preprocessed and used for predictions of the rheo-
response, only a general trend of linearity is ob- logical response. The calibration model built on
served in the second score plot of Figure 15. One the reduced response matrix, t1,PCA , was used to
reason for the deviation from linearity is the lack predict the t̂1,NIR value for each test scan. There-
of samples available for calibration with uniform fore, for every test scan, a value for t̂1,NIR is pre-
distribution of rheological properties. (Note the dicted. The t̂1,NIR values are plotted against the
‘‘holes’’ in calibration data in the higher end of extruder run time in Figure 16. The detection lim-
calibration set, which is evident from the values its for predictions are decided by the SEP values
of t1,PCA in Fig. 15.) obtained from the calibration model. It is observed

that most predictions lie within the limits defined
by the SEP.

Real-time Predictions in an In-Line Once the predicted t̂1,NIR values are obtained
Extrusion Process by PLS, the entire complex viscosity response is

regenerated using eq. (7), as explained in the pre-Finally, the stability of the predictions using the
vious section. Therefore, for every test scan, onecalibration model was tested in a real-time in-line
linear viscoelastic curve was estimated. Severalextrusion process. Four Group I samples, followed
such curves, which were obtained over the entireby four Group II samples, which were not included
extruder run time, are shown in Figure 17 as ain the calibration set, were continuously fed into
thre-dimensional plot. This plot shows the com-the extruder, and test scans taken. Two samples
plex viscosity response vs. v with polymer extru-with very low Éh*(v )É values (MI Å 143 g/10 min
sion time. As observed during the predictions ofand MI Å 370 g/10 min) were excluded from the
MI in near real time, the transition of Éh*(v )Éanalysis, as they gave larger residual errors. As

explained in the previous section, these large er- response is smooth from one sample to another.
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sponses. With additional physical parameters,
such as branching parameters and MWD affect-
ing rheological behavior, the resulting rheology
data will be more complex. In such cases, PCA
analysis will highlight the need for larger number
of principal components to explain significant
variance in the Y data. However, this experimen-
tal limitation does not imply a deficiency in the
calibration methodology. With additional factors
required for PCA, the procedure for PLS regres-
sion will remain essentially same. Only, addi-
tional calibration models need to be developed for
predictions of several principal components,
tj,PCA , { j Å 1, . . . , k } . The entire rheological re-
sponse can still be regenerated from eq. (7). Be-
cause these additional physical parameters are
also expected to affect the rheological flow behav-
ior during extrusion, and subsequently, the NIR
absorption spectra, the methodology described in
the previous sections should hold for complicated
rheological behavior as well.

Temperature is an important variable, which
would have a large effect on rheological proper-
ties, but only a subtle peak-shifting effect in the
NIR data. The current study has focused only on
isothermal studies, and temperature was not in-
cluded as an independent variable during calibra-
tion. During extrusion, factors such as viscous
heating will lead to significant temperature

Figure 14 Schematic representation of contraction changes; although for this study, a precise quanti-
flow through the flow cell. tative measurement was not available for esti-

mating such temperature increase. However, the
operating conditions for the linear viscoelastic ex-
periments, and for extrusion, were held within

The transition region also indicates the average nominal fluctuations about the temperature set
residence time of the sample in the polymer moni- point. Also, it should be noted that the strong ef-
toring system. fect of temperature on rheological properties is

suppressed to a great extent by using natural log-
arithms of the rheological functions during cali-

EXPERIMENTAL LIMITATIONS bration. Another strategy to include temperature
variations is to perform the linear viscoelastic ex-
periments on each of these EVA copolymers atIn the experimental set of EVA samples chosen,

the rheological data showed only one factor of different temperatures. The temperature range
for these measurements should be chosen to in-variation. This conclusion is drawn from the re-

sults obtained from PCA analysis, which showed clude the maximum expected increase from vis-
cous heating. A strategy involving PCA can bethat the first principal component captured about

99.82% variation. This meant variation in only developed, similar to the one developed earlier,
where the linear viscoelastic response curves atone physical factor, probably differences in poly-

mer average molecular weight among various varying temperatures for each EVA sample is
superposed onto a single master curve (or firstEVA samples. (The polymerization process and

termination conditions were similar for these ran- loading vector ) . Subsequently, these master
curves for the EVA samples can be used to de-dom copolymers from both manufacturers.) Such

variation in molecular weight values resulted in velop the calibration model, using the methodol-
ogy described in this article. Given an EVA sam-a vertical shift in various complex viscosity re-
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Figure 15 PLS calibration of t1,PCA : scores plot for the second factor. If the second
factor had complete information about the rheological response, a strictly linear trend
would be expected. Because additional factors are required, only a general trend in
linearity is observed. Also, this score vector reflects the lack of uniform distribution of
sample properties for the calibration model.

ple with unknown complex viscosity response, measured temperature can be regenerated us-
ing the corresponding shift factor (or first scorethe calibration model can be used to estimate

its master curve; and the actual response at the vector ) .

Figure 16 In-line real-time predictions of t̂1,NIR in Group I and Group II samples:
Four Group I samples followed by four Group II samples were fed into the extruder in
an extrusion process and test scans collected: the predictions lie within the SEP limits
associated with the calibration models. (SEP Å 0.80; UDL Å upper detection limit;
LDL Å lower detection limit.)
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Figure 17 Three-dimensional plot showing the real-time predictions for the rheologi-
cal response of Group I and Group II samples (these samples were not included during
calibration): the complex viscosity curves are regenerated from the PLS-predicted t̂1,NIR

values (shown in Fig. 16) using eq. (7). The rheological data used for correlation with
NIR spectra had only physical factor of variation.

The calibration model built here is by no tributed to the anisotropic rheological flow be-
havior of molten polymers during extrusion. Un-means universal in its applicability to all EVA

polymers using any near-infrared instrument. der nominal shear rates, the level of molecular
orientation will be different for flowing polymerHowever, a methodology has been proposed, and

feasibility of its use has been successfully dem- melts associated with varying molecular weight
parameters. This anisotropic nature of flow willonstrated for estimating complex viscosity re-

sponses with one factor of variation. Typically, result in lower order magnitude effects on ab-
sorption spectra. These subtle variations in NIRa very large set of samples is required to build

a robust calibration model. It is crucial for such spectra appear in higher factors or loadings; and
correlate with polymer rheological properties,a large sample set to include samples with uni-

form and wide variation in the rheological pa- such as linear viscoelastic material functions.
In conjunction with predictions of MI, 1 it hasrameters. Also, the distribution of the MV w pa-

rameters and VA content in these samples been shown for molten EVA copolymers, that
dynamic linear viscoelastic properties, whichshould be random. At the same time, it is im-

portant that the entire ranges of VA and rheo- have one factor of variation, can be estimated
using in-line fiber-optic NIR spectroscopy. Thelogical variations (the primary and secondary

factors of variation, respectively ) be repre- calibration models are robust in that predictions
are stable in a real-time process, and lie withinsented in the calibration set.
SEP limits set by the models. Temperature ef-
fects on the spectra are also significant, though
in this study, the temperatures of the moltenCONCLUSIONS
polymer in the flow cell remained constant with
a minimal variance of about 1–37C. However,The ‘‘primary’’ or the dominant factor of varia-
the calibration models can be further improvedtion in the NIR absorption spectra is the VA
by including temperature as an independentcontent in the copolymer, and appears as the
variable alongside the absorbance spectra, infirst principal component. The ‘‘secondary’’ fac-

tors that affect the absorption spectra are at- the X matrix. The methodology presented here
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PLS Partial least squaresfor Éh*(v )É would be equally applicable to
PRESS Predicted residual sum of squaresh(g

h
) vs. g

h
, the shear rate data.

reg Used as a subscript to denote a regener-
ated matrix, after PCA analysis

SEC Standard error of calibrationNOMENCLATURE
SEP Standard error of prediction
SVD Singular value decomposition of a ma-Symbol

trixAbbreviation Description
T Scores matrix
T Used as a superscript to denote trans-

a Matrix of regression coefficients, ob- pose of a matrix
tained from PLS regression t Score vector, column of matrix T

b Regression coefficient vectors, obtained U Scores matrix or left eigenvector, ob-
from PLS regression tained from SVD analysis

Éh*(v )É Complex viscosity, expressed as a func- UDL Upper detection limit for quantification
tion of v (Pars) V Right singular vector, obtained from

S Diagonal matrix with singular values SVD
as diagonal elements VA Vinyl acetate comonomer, in EVA co-

v Angular frequency (rad/s) polymer
B Matrix of regression coefficients, ob- X NIR absorbance data matrix

tained from PLS regression Y Rheology data matrix
EVA Ethylene–vinyl acetate copolymer y Vector, column of Y
G * (v ) Storage modulus, expressed as a func- ˆ Symbol used to denote estimated values

tion of v(Pa) of variables, obtained from regression
G 9 (v ) Loss modulus, expressed as a function

of v(Pa)
j Array
k Array
LAS Leave-a-sample crossval idat ion REFERENCES

approach
LDL Lower detection limit for quantification 1. M. G. Hansen and S. Vedula, J. Appl. Polym. Sci.,
MI Melt flow index (g/10 min) to appear.

2. A. Hoskuldsson, J. Chemometr., 9, 91 (1995).MV w Weight average molecular weight of the
3. A. Hoskuldsson, J. Chemometr., 9, 91 (1995).polymer (g/mol)
4. H. Martens and T. Naes, in Multivariate Calibra-MWD Molecular weight distribution in the

tion, John Wiley & Sons Ltd., New York, 1989.polymer
5. J. Sun, J. Chemometr., 10, 1 (1996).m Index, number of rows in a matrix
6. J. D. Ferry, in Viscoelastic Properties of Polymers,NIR 1. Near-infrared John Wiley & Sons, Inc., New York, 1980.

2. Used as a subscript to denote results 7. R. B. Bird, R. C. Armstrong, and O. Hasseger, Dy-
from regression with NIR data namics of Polymeric Liquids, John Wiley & Sons,

n Index, number of columns in a matrix Inc., New York, 1987.
PCA 1. Principal component analysis 8. D. A. Burns and E. W. Ciurczak, in Handbook of Near-

2. Used as a subscript to denote results Infrared Analysis, Marcel-Dekker, Inc., New York,
1992.from PCA analysis

4708/ 8E13$$4708 02-27-98 15:22:36 polaa W: Poly Applied


